These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Production, Biochemical Characterization, and Kinetic/Thermodynamic Study of Inulinase from Aspergillus terreus URM4658.
    Author: de Oliveira RL, da Silva SP, Converti A, Porto TS.
    Journal: Molecules; 2022 Sep 28; 27(19):. PubMed ID: 36234954.
    Abstract:
    Inulinases are enzymes involved in the hydrolysis of inulin, which can be used in the food industry to produce high-fructose syrups and fructo-oligosaccharides. For this purpose, different Aspergillus strains and substrates were tested for inulinase production by solid-state fermentation, among which Aspergillus terreus URM4658 grown on wheat bran showed the highest activity (15.08 U mL-1). The inulinase produced by this strain exhibited optimum activity at 60 °C and pH 4.0. A detailed kinetic/thermodynamic study was performed on the inulin hydrolysis reaction and enzyme thermal inactivation. Inulinase was shown to have a high affinity for substrate evidenced by very-low Michaelis constant values (0.78-2.02 mM), which together with a low activation energy (19.59 kJ mol-1), indicates good enzyme catalytic potential. Moreover, its long half-life (t1/2 = 519.86 min) and very high D-value (1726.94 min) at 60 °C suggested great thermostability, which was confirmed by the thermodynamic parameters of its thermal denaturation, namely the activation energy of thermal denaturation (E*d = 182.18 kJ mol-1) and Gibbs free energy (106.18 ≤ ΔG*d ≤ 111.56 kJ mol-1). These results indicate that A. terreus URM4658 inulinase is a promising and efficient biocatalyst, which could be fruitfully exploited in long-term industrial applications.
    [Abstract] [Full Text] [Related] [New Search]