These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. Author: Sasaki H, Bothner B, Dell A, Fukuda M. Journal: J Biol Chem; 1987 Sep 05; 262(25):12059-76. PubMed ID: 3624248. Abstract: The proper glycosylation of erythropoietin is essential for its function in vivo. Human erythropoietins were isolated from Chinese hamster ovary cells transfected with a human erythropoietin cDNA and from human urine. Carbohydrate chains attached to these proteins were isolated and fractionated by anion-exchange high performance liquid chromatography (HPLC) and HPLC employing a Lichrosorb-NH2 column. The structures of fractionated saccharides were analyzed by fast atom bombardment-mass spectrometry and methylation analysis before and after treatment with specific exoglycosidases. Both erythropoietins were found to contain one O-linked oligosaccharide/mol of the proteins, and its major component was elucidated to be NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH (where NeuNAc represents N-acetylneuraminic acid) in both proteins. The N-linked saccharides of recombinant erythropoietin were found to consist of biantennary (1.4% of the total saccharides), triantennary (10%), triantennary with one N-acetyllactosaminyl repeat (3.5%), tetraantennary (31.8%), and tetraantennary with one (32.1%), two (16.5%), or three (4.7%) N-acetyllactosaminyl repeats. All of these saccharides are sialylated by 2----3-linkages. Tetraantennary with or without polylactosaminyl units are mainly present as disialosyl or trisialosyl forms, and these structures exhibit the following unique features. alpha 2----3-Linked sialic acid and N-acetyllactosaminyl repeats are selectively present in the side chains attached to C-6 and C-2 of 2,6-substituted alpha-mannose and C-4 of 2,4-substituted alpha-mannose. We have also shown that the carbohydrate moiety of urinary erythropoietin is indistinguishable from recombinant erythropoietin except for a slight difference in sialylation, providing the evidence that recombinant erythropoietin is valuable for biological as well as clinical use.[Abstract] [Full Text] [Related] [New Search]