These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NSCGCN: A novel deep GCN model to diagnosis COVID-19.
    Author: Tang C, Hu C, Sun J, Wang SH, Zhang YD.
    Journal: Comput Biol Med; 2022 Nov; 150():106151. PubMed ID: 36244303.
    Abstract:
    AIM: Corona Virus Disease 2019 (COVID-19) was a lung disease with high mortality and was highly contagious. Early diagnosis of COVID-19 and distinguishing it from pneumonia was beneficial for subsequent treatment. OBJECTIVES: Recently, Graph Convolutional Network (GCN) has driven a significant contribution to disease diagnosis. However, limited by the nature of the graph convolution algorithm, deep GCN has an over-smoothing problem. Most of the current GCN models are shallow neural networks, which do not exceed five layers. Furthermore, the objective of this study is to develop a novel deep GCN model based on the DenseGCN and the pre-trained model of deep Convolutional Neural Network (CNN) to complete the diagnosis of chest X-ray (CXR) images. METHODS: We apply the pre-trained model of deep CNN to perform feature extraction on the data to complete the extraction of pixel-level features in the image. And then, to extract the potential relationship between the obtained features, we propose Neighbourhood Feature Reconstruction Algorithm to reconstruct them into graph-structured data. Finally, we design a deep GCN model that exploits the graph-structured data to diagnose COVID-19 effectively. In the deep GCN model, we propose a Node-Self Convolution Algorithm (NSC) based on feature fusion to construct a deep GCN model called NSCGCN (Node-Self Convolution Graph Convolutional Network). RESULTS: Experiments were carried out on the Computed Tomography (CT) and CXR datasets. The results on the CT dataset confirmed that: compared with the six state-of-the-art (SOTA) shallow GCN models, the accuracy and sensitivity of the proposed NSCGCN had improve 8% as sensitivity (Sen.) = 87.50%, F1 score = 97.37%, precision (Pre.) = 89.10%, accuracy (Acc.) = 97.50%, area under the ROC curve (AUC) = 97.09%. Moreover, the results on the CXR dataset confirmed that: compared with the fourteen SOTA GCN models, sixteen SOTA CNN transfer learning models and eight SOTA COVID-19 diagnosis methods on the COVID-19 dataset. Our proposed method had best performances as Sen. = 96.45%, F1 score = 96.45%, Pre. = 96.61%, Acc. = 96.45%, AUC = 99.22%. CONCLUSION: Our proposed NSCGCN model is effective and performed better than the thirty-eight SOTA methods. Thus, the proposed NSC could help build deep GCN models. Our proposed COVID-19 diagnosis method based on the NSCGCN model could help radiologists detect pneumonia from CXR images and distinguish COVID-19 from Ordinary Pneumonia (OPN). The source code of this work will be publicly available at https://github.com/TangChaosheng/NSCGCN.
    [Abstract] [Full Text] [Related] [New Search]