These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modular Construction of an MIL-101(Fe)@MIL-100(Fe) Dual-Compartment Nanoreactor and Its Boosted Photocatalytic Activity toward Tetracycline.
    Author: Jin Y, Mi X, Qian J, Ma N, Dai W.
    Journal: ACS Appl Mater Interfaces; 2022 Oct 26; 14(42):48285-48295. PubMed ID: 36253373.
    Abstract:
    Iron-based metal-organic frameworks (MOFs) have aroused extensive concern as prospective photocatalysts for antibiotic (e.g., tetracycline, TC) degradation. However, efficiencies of single and simple Fe-based MOFs still undergo restricted light absorption and weak charge separation. Assembly of different iron-based MOF building blocks into a hybrid MOF@MOF heterostructure reactor could be an encouraging strategy for the effective capture of antibiotics from the aqueous phase. This paper reports a new-style MIL-101(Fe)@MIL-100(Fe) photocatalyst, which was groundbreakingly constructed to realize a double win for boosting the performances of adsorption and photocatalysis. The optical response range, surface open sites, and charge separation efficiency of MIL-101(Fe)@MIL-100(Fe) can be regulated through accurate design and alteration. Attributed to the synergistic effects of double iron-based MOFs, MIL-101(Fe)@MIL-100(Fe) exhibits an excellent photocatalytic activity toward TC degradability compared to MIL-101(Fe) and MIL-100(Fe), which is even superior to those reported previously in the literature. Furthermore, the main active species of •O2- and h+ were proved through trapping tests of the photocatalytic process. Additionally, MIL-101(Fe)@MIL-100(Fe) possesses remarkable stability, maintaining more than 90% initial photocatalytic activity after the fifth cycle. In brief, MIL-101(Fe)@MIL-100(Fe) was highly efficient for TC degradation. Our work offers a new strategy for visible-light photodegradation of TC by exploring the double Fe-based MOF composite.
    [Abstract] [Full Text] [Related] [New Search]