These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemistry and Function of Glycosaminoglycans in the Nervous System.
    Author: Schwartz NB, Domowicz MS.
    Journal: Adv Neurobiol; 2023; 29():117-162. PubMed ID: 36255674.
    Abstract:
    Proteoglycans, and especially their GAG components, participate in numerous biologically significant interactions with growth factors, chemokines, morphogens, guidance molecules, survival factors, and other extracellular and cell-surface components. These interactions are often critical to the basic developmental processes of cellular proliferation and differentiation, as well as to both the onset of disease sequelae and prevention of disease progression. In many tissues, proteoglycans and especially their glycosaminoglycan (GAG) components are mediators of these processes. The GAG family is characterized by covalently linked repeating disaccharides forming long unbranched polysaccharide chains. Thus far in higher eukaryotes, the family consists of chondroitin sulfate (CS), heparin/heparan sulfate (HS), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronan (HA). All GAG chains (except HA) are characteristically modified by varying amounts of esterified sulfate. One or more GAG chains are usually found in nature bound to polypeptide backbones in the form of proteoglycans; HA is the exception. In the nervous system, GAG/proteoglycan-mediated interactions participate in proliferation and synaptogenesis, neural plasticity, and regeneration. This review focuses on the structure, chemistry and function of GAGs in nervous system development, disease, function and injury response.
    [Abstract] [Full Text] [Related] [New Search]