These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and characterization of Black Au nanoparticles deposited over g-C3N4 nanosheets: enhanced photocatalytic degradation of methylene blue. Author: Atashkadi M, Mohadesi A, Karimi MA, Mohammadi SZ, Haji Aghaei V. Journal: Environ Technol; 2024 Feb; 45(6):1124-1140. PubMed ID: 36259634. Abstract: Black AuNPs, prepared by a facile seeding growth method under ambient conditions, displayed efficient broadband absorption of the incident light over the entire visible and near-infrared regions of the solar spectrum. The spherical black AuNPs with the size of 2-4 nm were deposited over mesoporous g-C3N4 nanosheets. Novel black AuNPs/g-C3N4 plasmonic photocatalysts were used to remove methylene blue (MB) dye from an aqueous solution. The degradation efficiency for the optimal coupling of 1.3 wt.% black AuNPs with g-C3N4 (1.2 g) was found to be 85% within 60 min under visible light irradiation. The calculated kinetic constant was 0.0186 min-1 which was 6.4 and 2.9 times greater than those for g-C3N4 and AuNPs/g-C3N4 nanocomposite, respectively. The excellent potential in photocatalysis was attributed to the synergistic interactions of the g-C3N4 conduction band and the localized surface plasmon resonance effect of black AuNPs. These properties were responsible for the generation of high-energy electrons, a negative shift in the Fermi level of black AuNPs, and the migration of charge carriers. This work studied a new insight into black gold nanoparticles via the design of a visible-light-driven photocatalyst and provided a perspective on valuable photo-related applications such as water treatment.[Abstract] [Full Text] [Related] [New Search]