These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plant jasmonic acid mediated contrasting effects of two citrus aphid species on Diaphorina citri Kuwayama.
    Author: Gao J, Tao T, Arthurs SP, Ye F, An X, Hussain M, Mao R.
    Journal: Pest Manag Sci; 2023 Feb; 79(2):811-820. PubMed ID: 36264110.
    Abstract:
    BACKGROUND: Herbivores may influence each other directly and through plant mediated inter-specific interactions. The Asian citrus psyllid (Diaphorina citri Kuwayama) and citrus aphids are key pests that can co-exist on citrus, but their plant-mediated interaction between them is unknown. Here we investigated plant-mediated effect of two citrus aphid species, the polyphagous Aphis spiraecola Patch and the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) on the feeding behavior and reproduction of Diaphorina citri, and explored the underlying mechanisms. RESULTS: In comparison with those on aphid free plants, Diaphorina citri had decreased reproduction and reduced phloem feeding on Aphis spiraecola pre-infested plants, while the reproduction and feeding efficiency were increased on Aphis citricidus pre-infested plants. Jasmonic acid (JA) dependent defense was significantly activated by Diaphorina citri feeding on Aphis spiraecola pre-infested plants, but was suppressed by Diaphorina citri feeding on Aphis citricidus pre-infested plants compared with that on aphid free plant. By contrast, only one tested marker gene in salicylic acid (SA) signaling was activated by Diaphorina citri feeding on Aphis spiraecola pre-infested plants. Furthermore, exogenous application of methyl jasmonate, but not SA, conferred resistance against Diaphorina citri in our citrus trials. CONCLUSION: Our results indicate that pre-infestation by two citrus aphid species differentially altered Diaphorina citri induced citrus JA dependent defense, which resulted in different effect on subsequent Diaphorina citri performance. © 2022 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]