These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210-3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis. Author: Lei D, Li B, Isa Z, Ma X, Zhang B. Journal: Tissue Cell; 2022 Dec; 79():101956. PubMed ID: 36272206. Abstract: OBJECTIVE: Ferroptosis is a novel mode of non-apoptotic cell death induced by build-up of toxic lipid peroxides (lipid-ROS) in an iron dependent manner, which is a key event in ischemia/reperfusion (I/R)-induced cardiomyocytes damages. Studies indicated that ischemic preconditioning with cardiac microvascular endothelial cells (CMECs) protected against I/R-induced cardiomyocytes damages. However, the role of hypoxia-conditioned CMECs-derived Exo (H-exo) in I/R cardiomyocytes damages remains largely unclear. Therefore, the objective of this study was to explore the role and underlying mechanisms of H-exo in hypoxia/reoxygenation(H/R)-induced H9C2 cells damages. METHODS: The rat CMECs were subjected to hypoxia or normoxia culture and Exo was subsequently collected and identified. H-exo or normoxia-conditioned CMECs-derived Exo (N-exo) were administered to H9C2 cells with H/R. To evaluate the therapeutic effect of H-exo and H-exo on H/R-induced H9C2 cells damages, cell proliferation was detected by CCK-8 assay and Edu staining, and ferroptosis process were evaluated by iron ion concentration, lipid reactive oxygen species (ROS) level, malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) level, and the protein expression of ferroptosis markers. Mechanically, we utilized the RT-qPCR to identify the expression of candidate miR-210-3p in N-exo and H-exo. Bioinformatics combined with dual luciferase reporter assay disclosed the downstream molecular mechanism of miR-210-3p. RESULTS: The results indicated that both H-exo and N-exo significantly facilitated cell proliferation, increased GSH-Px levels and ferroptosis marker (GPX4) protein levels, and reduced iron ion concentration, lipid ROS level, MDA levels and ferroptosis markers (ACSL4 and PTGS2) protein levels in H/R-treated H9C2 cells. More importantly, the therapeutic effect of H-exo was significantly better than that of N-exo. Mechanistically, the results of RT-qPCR revealed significant enrichment of miR-210-3p in H-exo compared with N-exo. The miR-210-3p delivered by H-exo inhibited TFR expression by directly interacting with TFR mRNA, resulting in the promotion of cell proliferation and the attenuation of cell ferroptosis in H/R-treated H9C2 cells. CONCLUSION: All these data demonstrated that H-exo derived miR-210-3p facilitated the proliferation of myocardial cells in H/R-treated H9C2 cells by suppressing TFR-mediated ferroptosis, which provided new methods to treat H/R-induced myocardial injury.[Abstract] [Full Text] [Related] [New Search]