These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hedychium flavum flower essential oil: Chemical composition, anti-inflammatory activities and related mechanisms in vitro and in vivo.
    Author: Tian M, Xie D, Yang Y, Tian Y, Jia X, Wang Q, Deng G, Zhou Y.
    Journal: J Ethnopharmacol; 2023 Jan 30; 301():115846. PubMed ID: 36280015.
    Abstract:
    ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium flavum, an ornamental, edible, and medicinal plant, is extensively cultivated as a source of aromatic essential oils (EO). Its flower is a traditional Chinese medicine for treating inflammation-related diseases like indigestion, diarrhea, and stomach pain. In particular, H. flavum flower EO has been used in cosmetics and as an aromatic stomachic to treat chronic gastritis in China. AIM OF THE STUDY: This research aimed to analyze H. flavum flower EO's chemical composition and explore its anti-inflammatory activities and related mechanisms in vitro and in vivo. MATERIALS AND METHODS: EO's chemical composition was determined by GC-FID/MS analysis. For in vitro test, the anti-inflammatory activity of EO was demonstrated by measuring the LPS-induced release of NO, PGE2, IL-1β, TNF-α, and IL-6 in RAW264.7 macrophages, and then its related mechanisms were explored using qRT-PCR, western blot, and immunofluorescent staining analysis. Next, EO's in vivo anti-inflammatory potential was further evaluated using a xylene-induced ear edema model, in which ear swelling and TNF-α, IL-6, and IL-1β levels in serum and tissue were examined. RESULTS: The main components of EO were β-pinene (20.2%), α-pinene (9.3%), α-phellandrene (8.3%), 1,8-cineole (7.1%), E-nerolidol (5.4%), limonene (4.4%), borneol (4.1%), and β-caryophyllene (3.7%). For the anti-inflammatory activities in vitro, EO dramatically reduced the LPS-stimulated NO and PGE2 release by suppressing the mRNA and protein expression of iNOS and COX-2. Meanwhile, it remarkably decreased IL-6, TNF-α, and IL-1β production by inhibiting their mRNA levels. Related mechanism studies indicated that it not only inhibited IκBα phosphorylation and degradation, leading to blockade of NF-κB nuclear transfer but also suppressed MAPKs (ERK, p38, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. Further in vivo assay showed that EO ameliorated xylene-induced ear edema in mice and reduced TNF-α, IL-6, and IL-1β levels in serum and tissue. CONCLUSIONS: H. flavum EO exerted significant anti-inflammatory activity in vivo and in vitro, and its mechanism of action is related to the inhibition of MAPK and NF-κB activation. Thus, H. flavum EO could be considered a novel and promising anti-inflammatory agent and possess high potential for utilization in the pharmaceutical field.
    [Abstract] [Full Text] [Related] [New Search]