These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Azadirachta indica leaf extract mediated silver nanoparticles impregnated nano composite film (AgNP/MCC/starch/whey protein) for food packaging applications.
    Author: Pandian H, Senthilkumar, Ratnam M V, M N, S S.
    Journal: Environ Res; 2023 Jan 01; 216(Pt 2):114641. PubMed ID: 36283439.
    Abstract:
    In order to be used in food packaging, the study aims to develop a composite film based on microcrystalline cellulose (MCC) and coated with silver nanoparticles (AgNPs). The MCC was derived from sugar cane bagasse. Protein, starch, and poly-ethylene glycol 1500 (PEG-1500) are employed to improve the tensile strength, flexibility, and durability of the packaging film. The AgNPs was synthesized by a green route employing Azadirachtaindica leaf extract as reducing agent. The determined average crystallite size of AgNPs was seen at 20 nm. The X-ray diffraction (XRD) studies of the final film prepared have an elevated peak with a crystallinity of 37.5%. The scanning electron microscopic images (SEM) of the AgNPs and the prepared samples, reveal their surface morphology. The Fourier transform infrared spectroscopic studies (FT-IR) disclose the functional group changes during the film preparation. The antibacterial activity of the amalgamated AgNPs against five bacterial pathogens studied was found to be highly active against tested food pathogens, except for Proteus vulgari. When coated over a vegetable, the produced nanocomposite film displayed an increased shelf life for the vegetable by limiting the decay impact caused by food pathogens. According to the findings, the AgNPs-impregnated MCC/Starch/Whey protein has the potential to be employed as an antimicrobial packaging material.
    [Abstract] [Full Text] [Related] [New Search]