These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simple and fast determination of tetrodotoxin in human plasma based on hydrophilic-interaction/ion-exchange mixed-mode solid phase extraction combined with liquid chromatography-tandem mass spectroscopy.
    Author: Xin L, Liang Y, Yang S, Jiang F, Yu F, Zhang M, Chang W, Wang W, Yu C, Liu G, Lu Y.
    Journal: J Chromatogr A; 2022 Nov 22; 1684():463567. PubMed ID: 36288625.
    Abstract:
    In this study, we developed and validated a simple, fast and sensitive LC-MS/MS method for the measurement of tetrodotoxin (TTX) in human plasma. Three HILIC-type solid phase extraction (SPE) carriers (PSA, silica, Siphila i HILIX) with different stationary phase functional groups were compared. The Siphila i HILIX SPE plate containing multi-carboxyl groups was finally selected due to obviously better extraction recovery of TTX (about 80% of recovery from plasma samples) than the other two and no significant matrix effects were observed, which was speculated to have mixed-mode synergistic effects of hydrophilic interaction and ion exchange. 100μL plasma sample was precipitated rapidly with acetonitrile containing 1% trichloroacetic acid, and filtrates were loaded onto Siphila i HILIX 96 well SPE plate. After washed with 95% acetonitrile, TTX was eluted with 200μL of 50% acetonitrile containing 1% trichloroacetic acid. 2μL of elution solution was directly injected into LC-MS/MS and the total run time on a BEH amide column was 4.5 min. The method avoids the evaporation and ultrafiltration processes which is simple and timesaving (<30 min). TTX and internal standard (arginine-15N4) were monitored in positive mode using m/z 320.3→162.2 (quantification transition for TTX), 320.3→284.1 (confirmation transition for TTX) and 179.2→63.0 (transition for IS), respectively. The method was linear in the range of 0.1-20 ng/mL for TTX with the low limit of quantification (S/N > 10) of 0.1 ng/mL; the intra- and inter-assay accuracies were in the range of 98.5%-99.8% (relative standard deviations, RSDs ≤ 5.92%) and 98.8-99.5% (RSDs ≤ 6.23%), respectively. Biases of spiking analysis were ranged from -7.00% to 7.43% for healthy human plasma samples (RSDs ≤ 8.83%) and from -5.00% to 3.93% for hemolytic, high triglyceride, high cholesterol and high bilirubin plasma samples (RSDs ≤ 6.40%), which proved the good anti-interference property of the method. The results showed that the method is sensitive, accurate, specific, reliable, and can be used to monitor the concentration of TTX in plasma to meet the needs of clinical research and poisoning screening.
    [Abstract] [Full Text] [Related] [New Search]