These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Gas Sensing Performance of ZnO/Ti3C2Tx MXene Nanocomposite.
    Author: Ta QTH, Thakur D, Noh JS.
    Journal: Micromachines (Basel); 2022 Oct 11; 13(10):. PubMed ID: 36296064.
    Abstract:
    A representative of titanium carbide MXene, Ti3C2Tx is a promising candidate for high performance gas sensing and has attracted significant attention. However, MXene naturally has a multilayer structure with low porosity, which prevents its gas-sensing activity. Zinc oxide (ZnO) has long been utilized as a gas detector. Despite its good response to multiple gases, high operation temperature has limited its widespread use as a gas-sensing material. In this study, a room-temperature toxic gas sensor was prepared from ZnO/Ti3C2Tx MXene nanocomposite consisting of 2D few-layered MXene and 1D ZnO nanoparticles. A simple technique for synthesizing the nanocomposite was established. The physicochemical properties of the nanocomposite were fine-controlled with more active sites and higher porosity. The sensitivity and gas-selectivity of the sensing material were closely examined. The nanocomposite showed enhanced response and recovery behaviors to toxic gases, which outperformed pure Ti3C2Tx MXene and pure ZnO. This study offers a practical strategy by which to increase the gas-sensing performance of Ti3C2Tx MXene, and expands comprehensive understanding of the gas-sensing process of ZnO/Ti3C2Tx p-n heterostructure.
    [Abstract] [Full Text] [Related] [New Search]