These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Author: Hunt M, Everaert L, Brown M, Muraru L, Hatzidimitriadou E, Desloovere K. Journal: Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544. Abstract: BACKGROUND: Robotic exoskeletons have been developed to assist locomotion and address gait abnormalities in children with cerebral palsy (CP). These wearable assistive devices provide powered assistance to the lower-extremity joints, as well as support and stability. RESEARCH QUESTION: Does exoskeleton-assisted walking improve gait in children with CP? METHODS: The PRISMA guidelines were used to conduct this systematic review. Articles were obtained in a search of the following electronic databases: Embase, CINAHL Complete, PubMed, Web of Science and MEDLINE. Studies investigating spatiotemporal, kinematic, kinetic, muscle activity and/or physiological parameters during exoskeleton-assisted walking in children with CP were included. All articles were assessed for methodological quality using an adapted version of the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group, provided by the National Institutes of Health (NIH). RESULTS: Thirteen studies were included. They involved the use of the following exoskeletons: tethered knee exoskeleton, pediatric knee exoskeleton (P.REX), untethered ankle exoskeleton, WAKE-Up ankle module, WAKE-Up ankle & knee module and unilateral ankle exosuit. Methodological quality varied, with key limitations in sample size and allocated time to adapt to the exoskeleton. There was a consensus that robotic exoskeletons improve gait given careful optimisation of exoskeleton torque and sufficient exoskeleton practice time for each participant. Improvements in gait included reduced metabolic cost of walking, increased walking speed, and increased knee and hip extension during stance. Furthermore, exoskeletons with an actuated ankle module were shown to promote normal ankle rocker function. SIGNIFICANCE: Robotic exoskeletons have the potential to improve the mobility of CP children and may therefore increase community participation and improve quality of life. Future work should involve larger controlled intervention studies utilising robotic exoskeletons to improve gait in children with CP. These studies should ensure sufficient exoskeleton practice time for each participant.[Abstract] [Full Text] [Related] [New Search]