These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential changes in somatosensory evoked potentials and motor performance: pursuit movement task versus force matching tracking task.
    Author: Ambalavanar U, Delfa N, McCracken H, Zabihhosseinian M, Yielder P, Murphy B.
    Journal: J Neurophysiol; 2022 Dec 01; 128(6):1453-1465. PubMed ID: 36321698.
    Abstract:
    Force modulation relies on accurate proprioception, and force-matching tasks alter corticocerebellar connectivity. Corticocerebellar (N24) and corticomotor pathways are impacted following the acquisition of a motor tracing task (MTT), measured using both somatosensory evoked potentials (SEPs) and transcranial magnetic stimulation. This study compared changes in early SEP peak amplitudes and motor performance following a force-matching tracking task (FMTT) to an MTT. Thirty (18 females) right-handed participants, aged 21.4 ± 2.76, were electrically stimulated over the right-median nerve at 2.47 Hz and 4.98 Hz (averaged 1,000 sweeps/rate) to elicit SEPs, recorded via a 64-channel electroencephalography cap, before, and after task acquisition using the right abductor pollicis brevis muscle. Retention was measured 24 h later. Significant time-by-group interactions occurred for the N20 SEP: 6.3% decrease post-FMTT versus 5.5% increase post-MTT (P = 0.013); P25 SEP: 4.0% decrease post-FMTT versus 10.3% increase post-MTT (P = 0.006); and N18 SEP: 113.4% increase post-FMTT versus 4.4% decrease post-MTT (P = 0.006). N18 and N30 showed significant effect of time (both P < 0.001). Motor performance: significant time-by-group interactions-postacquisition: FMTT improved 15.3% versus 24.3% for MTT (P = 0.025), retention: FMTT improved 17.4% and MTT by 30.1% (P = 0.004). Task-dependent differences occurred in SEP peaks associated with cortical somatosensory processing (N20 and P25), and cerebellar input (N18), with similar changes in sensorimotor integration (N30), with differential improvements in motor performance, indicating important differences in cerebellar and sensory processing for tasks reliant on proprioception.NEW & NOTEWORTHY This study demonstrates neurophysiological differences in cerebellar and somatosensory cortex pathways when learning a motor task requiring visuomotor tracking versus a task that requires force-matching modulation, in healthy individuals. The clear neurophysiological differences in early somatosensory evoked potentials associated with cortical somatosensory processing, cerebellar input, and sensorimotor integration between these two tasks demonstrate some of the neural correlates of force modulation and validate the force-matching task for use in future work.
    [Abstract] [Full Text] [Related] [New Search]