These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of dietary columbinic acid on the fatty acid composition and physical membrane properties of different tissues of EFA-deficient rats.
    Author: Mandon EC, de Gómez Dumm IN, Brenner RR.
    Journal: Arch Latinoam Nutr; 1986 Sep; 36(3):401-14. PubMed ID: 3632215.
    Abstract:
    The effect of columbinic acid (5 trans, 9 cis, 12 cis, octadeca-trienoic acid) supplemented to a fat-free diet on the fatty acid composition and its correlation to the physical properties of several tissues of rats, was studied. The absence of lipids in the diet produced the typical changes in the fatty acid composition characteristic of essential fatty acid (EFA) deficiency, namely a significant increase in the relative percentage of monoenoic fatty acids with a concomitant decrease in linoleic and arachidonic acids and a rise in eicosa-5,8,11-trienoic acid in liver, kidney, lung and spleen homogenates. Columbinic acid supplemented to a fat-free diet for 24 or 48 hr was incorporated into the different tissues and was partially elongated to 7 trans, 11 cis, 14 cis eicosatrienoic acid, but it was not desaturated. It modified the fatty acid spectrum of the lipids in the different tissues returning it to a similar composition of non-EFA deficient animals, except for a decrease of linoleic acid. The absence of lipids in the diet produced an increase in the 1-6 diphenyl-1,3,5-hexatriene (DPH) steady-state fluorescence anisotropy (rs) in liver microsomes, that was corrected by the administration of columbinic acid for 24 hr. It is concluded that columbinic acid produced a change in the pattern of total fatty acid composition of the different tissues studied which induced a favorable effect on the physical properties of the liver microsomal membranes (rs), leading to an improvement on the fatty acid deficiency in those membranes. Besides, columbinic acid would also exert a favorable effect in the short term, but not in the long-term eicosanoids production.
    [Abstract] [Full Text] [Related] [New Search]