These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR‑222-3p reduces neuronal cell apoptosis and alleviates spinal cord injury by inhibiting Bbc3 and Bim.
    Author: Zhang Q, Li G, Kong J, Dai J, Fan Z, Li J.
    Journal: Neurosci Res; 2023 Mar; 188():39-50. PubMed ID: 36328305.
    Abstract:
    Spinal cord injury (SCI) is a severe traumatic event, but without any established effective treatment because of the irreversible neuronal death. Here, we investigated the role of miR-222-3p in neuronal apoptosis following SCI. Rat SCI models and neuron hypoxia models were accordingly established. The Bbc3, Bim, Bcl-2, Bax, cleaved-caspase 3, cleaved-caspase 9, Cytochrome c, and miR-222-3p expression levels were examined by Western blotting and real-time reverse transcription polymerase chain reaction (RT-qPCR). The possible association between miR-222-3p and Bbc3/Bim was analyzed by dual-luciferase assay. The neuron viability was assessed by Cell Counting Kit-8 assay and Nissl's staining. Live cell staining was performed to detect the mitochondrial membrane potential and neuronal apoptosis. Rat locomotor function was assessed using the Basso-Beattie-Bresnahan scores. Cytochrome c was outflowed from the mitochondria after SCI or hypoxia treatment, and Bbc3, Bim, Bax, cleaved-caspase 9, and cleaved-caspase 3 were significantly upregulated, while Bcl-2 and miR-222-3p were decreased remarkably. Meanwhile, neuronal cell viability was significantly inhibited. Treatment of miR-222-3p significantly suppressed the Cytochrome c efflux and neuronal apoptosis and improved neuronal cell viability and motor function in SCI rats. Moreover, we found that Bbc3 and Bim were the direct targets of miR-222-3p. Overall, our data suggest that miR-222-3p could alleviate the mitochondrial pathway-mediated apoptosis and motor dysfunction in rats after SCI by targeting Bbc3 and Bim.
    [Abstract] [Full Text] [Related] [New Search]