These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioaugmentation reconstructed nitrogen metabolism in full-scale simultaneous partial nitrification-denitrification, anammox and sulfur-dependent nitrite/nitrate reduction (SPAS). Author: Liu H, Liu D, Huang Z, Chen Y. Journal: Bioresour Technol; 2023 Jan; 367():128233. PubMed ID: 36332873. Abstract: To enhance nitrogen removal of fermentation pharmaceutical wastewater with high nitrogen load, a full-scale process based on simultaneous partial nitrification-denitrification/ anammox/ sulfur autotrophic denitrification (SPAS) was established via inoculating with bioaugmentation consortia in a modified two-stage AO. More than 93 % TN and 98 % NH4+-N removal were obtained at a rate of 0.8 kg-N/ m3/d in the first A/O stage, in which short-cut SND was involved with 96.05 % ESND when bioaugmented with SND, while S0-SAD could coordinate with anammox to exert further deep denitrification in the second A/O stage. KEGG analysis demonstrated that the SPAS process was synergism of HD, PN/PDN, SND, SAD and anammox metabolism, bioaugmentation could significantly up-regulate genes related to microbial metabolism (TCA cycle, Carbon metabolism, ABC transporters) and environmental adaptation (Two-component system, Quorum sensing) based on the FAPROTAX and Picrust2 functional prediction. This study provided a new perspective in engineering applications.[Abstract] [Full Text] [Related] [New Search]