These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Passivation and Interlayer Effect of Zr(i-PrO)4 on Green CuGaS2/ZnS/Zr(i-PrO)4@Al2O3 and Red CuInS2/ZnS/Zr(i-PrO)4@Al2O3 QD Hybrid Powders.
    Author: Ko M, Yoon S, Eo YJ, Lee KN, Do YR.
    Journal: Nanoscale Res Lett; 2022 Nov 07; 17(1):106. PubMed ID: 36344881.
    Abstract:
    Broadband emissive I-III-VI quantum dots (QDs) are synthesized as efficient and stable I-III-VI QDs to be used as eco-friendly luminescent materials in various applications. Here, we introduce the additional passivation of zirconium isopropoxide (Zr(i-PrO)4) to improve the optical properties and environmental stability of green-emitting CuGaS2/ZnS (G-CGS/ZnS) and red-emitting CuInS2/ZnS (R-CIS/ZnS) QDs. The photoluminescence quantum yield (PLQY) of both resultant Zr(i-PrO)4-coated G-CGS/ZnS and R-CIS/ZnS QDs reaches similar values of ~ 95%. In addition, the photostability and thermal-stability of G-CGS/ZnS/Zr(i-PrO)4 and R-CIS/ZnS/Zr(i-PrO)4 QDs are improved by reducing the ligand loss via encapsulation of the ligand-coated QD surface with Zr(i-PrO)4. It is also proved that the Zr(i-PrO)4-passivated interlayer mitigates the further degradation of I-III-V QDs from ligand loss even under harsh conditions during additional hydrolysis reaction of aluminum tri-sec-butoxide (Al(sec-BuO)3), forming easy-to-handle G-CGS/ZnS and R-CIS/ZnS QD-embedded Al2O3 powders. Therefore, the introduction of a Zr(i-PrO)4 complex layer potentially provides a strong interlayer to mitigate degradation of I-III-VI QD-embedded Al2O3 hybrid powders as well as passivation layer for protecting I-III-VI QD.
    [Abstract] [Full Text] [Related] [New Search]