These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release. Author: Pirsa S, Mahmudi M, Ehsani A. Journal: Int J Biol Macromol; 2023 Jan 01; 224():1588-1599. PubMed ID: 36346259. Abstract: In this study, maltodextrin (MDex), lutein pigment (Lut) and alumina (Al) were used to modify biodegradable film based on cress seed mucilage (Muc/MDex/Lut/Al). Central composite design (CCD) was used to study the effects of MDex, Lut and Al on the physical and chemical properties of the mucilage based film. The physicochemical, mechanical, antimicrobial and structural properties of the films were studied by various techniques such as FTIR, SEM, and XRD and TGA. The release of lutein from the film was investigated at 25 °C for 15 days. The results showed that lutein, alumina and maltodextrin increased the film thickness and lutein decreased the solubility and moisture content of the film. Maltodextrin improved the mechanical properties of the film and lutein reduced the film's flexibility. Lutein greatly increased its antioxidant properties, but alumina slightly increased its antioxidant properties. Lutein, alumina and maltodextrin improved the antibacterial properties of the film. Muc/MDex/Lut/Al film showed 26 ± 0.5 and 23 ± 0.8 mm non-growth halo against to Staphylococcus aureus and Escherichia coli, respectively. Maltodextrin filled the surface cracks, but lutein increased the surface cracks of mucilage film. The amorphous structure of the pure cress seed mucilage film was confirmed by XRD, which the alumina and lutein gave crystalline properties in the film. Maltodextrin and alumina increased the thermal stability of the film. The release results showed that the release rate of lutein depends on the structure of the film and by changing the structure of the film, the release rate can be purposefully controlled according to the required release rate.[Abstract] [Full Text] [Related] [New Search]