These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Recent advances in the use of graphene for sample preparation].
    Author: Feng J, Sun M, Feng Y, Xin X, Ding Y, Sun M.
    Journal: Se Pu; 2022 Nov; 40(11):953-965. PubMed ID: 36351804.
    Abstract:
    Sample preparation is playing an increasingly important role in sample analysis. The enrichment efficiency of the target and the removal effect of the sample matrix are strongly dependent on the extraction material. Therefore, the development of efficient extraction materials is an important research focus in the field of sample preparation. Various advanced materials such as nanomaterials, mesoporous materials, ionic liquids, aerogels, carbon materials, metal-organic frameworks, and covalent organic frameworks have been introduced to produce a diverse range of extraction materials for sample preparation. Owing to its unique physical and chemical properties, graphene, an excellent carbon nanomaterial, has attracted significant attention in different areas. Due to their unique advantages of large surface area, large π-electrons, excellent adsorption properties, abundant functional groups, and facile chemical modification, graphene-based materials have displayed excellent extraction performance for diverse analytes. Furthermore, graphene-based extraction materials have been applied to pretreat real samples from different fields. This paper provides an overview of the recent advances in graphene sample preparation from 2020 to date. The manuscript covers the use of graphene, graphene oxide, and the related functionalized materials as sorbents, as well as their specific applications in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fiber solid-phase microextraction, and in-tube solid-phase microextraction. To prevent the aggregation of graphene, three-dimensional graphene, porous graphene aerogels, graphene-modified silica, and stainless-steel mesh were developed for cartridge solid-phase extraction. Furthermore, some graphene-based extraction materials were used to develop online solid-phase extraction, which allowed for automatic and high-throughput tests. Graphene nanosheets and their hybrid materials with molybdenum disulfide or zinc oxide nanoparticles have been applied to dispersive solid-phase extraction, and several types of contaminants, including metal ions, bisphenol endocrine disruptors, paraben preservatives, and phthalates, could be captured. By combination with magnetic materials using the coprecipitation method or via chemical post-modification, many magnetic graphene extraction materials have been produced for magnetic solid-phase extraction. The introduction of magnetic graphene not only enhanced the extraction efficiency but also simplified the test process, making it highly suitable for complex samples such as food and biological samples. Similar to magnetic solid-phase extraction, stir bar sorptive extraction is a very simple and efficient extraction method that shows good extraction performance for metal ions and organic pollutants from environmental water, medicines in urine, and organic pollutants in cosmetics. In addition to its excellent applicability to solid-phase extraction, graphene delivered satisfactory performance for solid-phase microextraction. Graphene has been used as an extraction coating for the extraction of fibers or tubes by coupling solid-phase microextraction with chromatographic detection, and many kinds of organic pollutants, including polychlorinated biphenyls, phthalates, polycyclic aromatic hydrocarbons, toluene, xylenes, organophosphorus pesticides, phenoxy acid herbicides, and antibiotics, in environmental or biological samples have been successfully determined. The extraction mechanism, including π-π, electrostatic, hydrophobic, hydrophilic, and hydrogen-bonding interactions, is also discussed. Because of the mixed-mode interactions and rich functionalization, graphene-based extraction materials could effectively capture and selectively enrich different types of species. These extraction or microextraction techniques have been coupled with detection methods such as chromatography, mass spectrometry, and atomic absorption spectroscopy and widely used in environmental monitoring, food safety, and biochemical analysis. The future development of graphene in the field of sample pretreatment focuses on the following aspects: 1) functionalization of graphene with specific groups such as affinity groups, chelating groups, and molecularly imprinted sites to achieve unique extraction selectivity; 2) combination of graphene with the advanced materials, including covalent organic frameworks, metal organic frameworks, aerogels, and nanomaterials, thus realizing the complementary advantages between materials, so that the hybrid graphene materials find broad application prospects in sample preparation; 3) combination of electromagnetic materials with graphene to form electromagnetic composites, as well as the use of electromagnetic fields to improve extraction selectivity and efficiency; 4) exploiting the good performance of graphene-based materials to overcome the difficulty encountered in the pretreatment of complex samples; 5) development of more green methods to prepare graphene-based extraction materials or functionalize graphene, in line with the trends in green chemistry; 6) application of more graphene-based materials to online sample preparation for meeting the development trends in the field of analytical chemistry. 样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。
    [Abstract] [Full Text] [Related] [New Search]