These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery and Optimization of an Aptamer and Its Sensing Ability to Amantadine Based on SERS via Binary Metal Nanoparticles. Author: Duan N, Ren K, Lyu C, Wang Z, Wu S. Journal: J Agric Food Chem; 2022 Nov 23; 70(46):14805-14815. PubMed ID: 36354154. Abstract: With the growing concern of illegal abuse of amantadine (AMD) and its potential harmful impact on humans, detection of AMD has become an urgent food safety and environmental topic. Biosensing is a promising method for this, but the effective recognition of AMD still remains a challenge. Herein, we isolated an aptamer (Am-20) for AMD through a 14-round iterative selection based on capture-SELEX. The preliminary interaction mechanism between AMD and Am-20 was clarified with the help of docking simulations. Facilitated by a base mutation and truncation strategy, an optimized aptamer Am-20-1 with a short length of 62-mer was obtained, which exhibited competitive affinity with a Kd value of 33.90 ± 5.16 nM. A structure-switching SERS-based aptasensor based on Am-20-1 was then established for AMD quantification via a binary metal nanoparticle-embedded Raman reporter substrate (AuNRs@ATP@AgNPs). The fabricated strategy showed a wide linear range (0.005∼25 ng/mL) and a low limit of detection (0.001 ng/mL) for AMD determination. We envision that the novel aptamer identified in this study will provide a complementary tool for specific recognition and detection of AMD and could assist in the supervision of illegal abuse of AMD.[Abstract] [Full Text] [Related] [New Search]