These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics.
    Author: Curecheriu L, Buscaglia MT, Lukacs VA, Padurariu L, Ciomaga CE.
    Journal: Materials (Basel); 2022 Nov 06; 15(21):. PubMed ID: 36363417.
    Abstract:
    Pure perovskite Ba0.90Ca0.10TiO3 ceramics, with a relative density of between 79 and 98% and grain sizes larger than 1 µm, were prepared by solid-state reaction. The dielectric and electrocaloric properties were investigated and discussed considering the density and grain size of the samples. Room temperature impedance measurements show good dielectric properties for all ceramics with relative permittivity between 800 and 1100 and losses of <5%. Polarization vs. E loops indicates regular variation with increasing sintering temperature (grain size and density), an increase in loop area, and remanent and saturation polarization (from Psat = 7.2 µC/cm2 to Psat = 16 µC/cm2). The largest electrocaloric effect was 1.67 K for ceramic with GS = 3 µm at 363 K and electrocaloric responsivity (ζ) was 0.56 K mm/kV. These values are larger than in the case of other similar materials; thus, Ba0.90Ca0.10TiO3 ceramics with a density larger than 90% and grain sizes of a few µms are suitable materials for electrocaloric devices.
    [Abstract] [Full Text] [Related] [New Search]