These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased chest CT derived bone and muscle measures capture markers of improved morbidity and mortality in COPD. Author: Wilson AC, Bon JM, Mason S, Diaz AA, Lutz SM, Estepar RSJ, Kinney GL, Hokanson JE, Rennard SI, Casaburi R, Bhatt SP, Irvin MR, Hersh CP, Dransfield MT, Washko GR, Regan EA, McDonald ML. Journal: Respir Res; 2022 Nov 15; 23(1):311. PubMed ID: 36376854. Abstract: BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging and is associated with comorbid conditions including osteoporosis and sarcopenia. These extrapulmonary conditions are highly prevalent yet frequently underdiagnosed and overlooked by pulmonologists in COPD treatment and management. There is evidence supporting a role for bone-muscle crosstalk which may compound osteoporosis and sarcopenia risk in COPD. Chest CT is commonly utilized in COPD management, and we evaluated its utility to identify low bone mineral density (BMD) and reduced pectoralis muscle area (PMA) as surrogates for osteoporosis and sarcopenia. We then tested whether BMD and PMA were associated with morbidity and mortality in COPD. METHODS: BMD and PMA were analyzed from chest CT scans of 8468 COPDGene participants with COPD and controls (smoking and non-smoking). Multivariable regression models tested the relationship of BMD and PMA with measures of function (6-min walk distance (6MWD), handgrip strength) and disease severity (percent emphysema and lung function). Multivariable Cox proportional hazards models were used to evaluate the relationship between sex-specific quartiles of BMD and/or PMA derived from non-smoking controls with all-cause mortality. RESULTS: COPD subjects had significantly lower BMD and PMA compared with controls. Higher BMD and PMA were associated with increased physical function and less disease severity. Participants with the highest BMD and PMA quartiles had a significantly reduced mortality risk (36% and 46%) compared to the lowest quartiles. CONCLUSIONS: These findings highlight the potential for CT-derived BMD and PMA to characterize osteoporosis and sarcopenia using equipment available in the pulmonary setting.[Abstract] [Full Text] [Related] [New Search]