These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anisohydric characteristics of a rice genotype 'ARC 11094' contribute to increased photosynthetic carbon fixation in response to high light. Author: Taniyoshi K, Tanaka Y, Adachi S, Shiraiwa T. Journal: Physiol Plant; 2022 Nov; 174(6):e13825. PubMed ID: 36377050. Abstract: Photosynthetic induction, which is the response of the CO2 assimilation rate to a stepwise increase in light intensity, potentially affects plant carbon gain and crop productivity in field environments. Although natural variations in photosynthetic induction are determined by CO2 supply and its fixation, detailed factors, especially CO2 supply, are unclear. This study investigated photosynthesis at steady and non-steady states in three rice (Oryza sativa L.) genotypes: ARC 11094, Takanari and Koshihikari. Stomatal traits and water relations in the plants were evaluated to characterise CO2 supply. Photosynthetic induction in ARC 11094 and Takanari was superior to that in Koshihikari owing to an efficient CO2 supply. The CO2 supply in Takanari is attributed to its high stomatal density, small guard cell length and extensive root mass, whereas that in ARC 11094 is attributed to its high stomatal conductance per stoma and stomatal opening in leaves with insufficient water (i.e., anisohydric stomatal behaviour). Our results suggest that there are various mechanisms for realising an efficient CO2 supply during the induction response. These characteristics can be useful for improving photosynthetic induction and, thus, crop productivity in field environments in future breeding programmes.[Abstract] [Full Text] [Related] [New Search]