These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones. Author: Zhang J, Chen Z, Tang F, Wu F, Luo X, Liu G. Journal: Mikrochim Acta; 2022 Nov 17; 189(12):449. PubMed ID: 36396739. Abstract: A highly fluorinated porphyrin-based covalent organic frameworks magnetic adsorbent (FPy-COF@PDA@Fe3O4) was fabricated by using polydopamine (PDA) grafting Fe3O4 nanospheres as magnetic core and FPy-COF as shell for magnetic solid phase extraction (MSPE) of fluoroquinolones (FQs). FPy-COF was constructed by using 5,15-bis(4-aminophenyl)-10,20-bis(perfluorophenyl)porphyrin and 4,4'-biphenyldicarboxaldehyde as two building blocks. PDA as a bridge grafting on the surface of Fe3O4 nanospheres facilitated the growth of FPy-COF. The morphology and structure of FPy-COF@PDA@Fe3O4 adsorbent were characterized in detail. The prepared magnetic adsorbent exhibited good extraction capability to amphiphilic FQs due to their superior chemical affinities such as fluorophilic interaction and hydrogen-bond interaction from nitrogen-rich skeleton. Under the optimized conditions, the MSPE method combined with high performance liquid chromatography with ultraviolet detection (HPLC-UV) was developed to sensitively quantify trace level of six FQs in milk samples. The developed MSPE-HPLC method showed good linearity with wide concentration range, precision, and low limits of detection (S/N = 3) for six FQs as low as 2.3 ngꞏmL-1 in milk. The extraction recoveries of different spiked concentrations were in the range 77.8-110.4% for milk samples with RSD less than 9.7%.[Abstract] [Full Text] [Related] [New Search]