These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Depinning phase transition of antiferromagnetic skyrmions with quenched disorder.
    Author: Wen MK, Xiong L, Zheng B.
    Journal: Phys Rev E; 2022 Oct; 106(4-1):044137. PubMed ID: 36397580.
    Abstract:
    Antiferromagnetic skyrmions are considered to be promising information carriers due to their attractive properties. Therefore, the pinning phenomenon of antiferromagnetic skyrmions is of great significance. With the Landau-Lifshitz-Gilbert equation, we simulate the nonstationary dynamic behaviors of skyrmions driven by currents in a chiral antiferromagnetic thin film with quenched disorder. Based on the dynamic scaling forms, the critical current and static and dynamic critical exponents of the depinning phase transition are accurately determined. A theoretical analysis using Thiele's approach is presented in comparison with the numerical simulation. Unlike the ferromagnetic skyrmions, the critical current of the antiferromagnetic skyrmions is very sensitive to a small nonadiabatic coefficient. This is important for manipulating antiferromagnetic skyrmions and designing novel information processing devices.
    [Abstract] [Full Text] [Related] [New Search]