These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phenol degradation in iron-based advanced oxidation processes through ferric reduction assisted by molybdenum disulfide. Author: You Y, He Z. Journal: Chemosphere; 2023 Jan; 312(Pt 1):137278. PubMed ID: 36400194. Abstract: In the iron-based advanced oxidation processes (AOPs), direct use of FeIII can be more convenient than FeII but the reduction of FeIII to FeII is a rate-limiting step. Introducing co-catalysts with abundant reducing sites to Fe-based AOPs can be an efficient way to accelerate the Fe redox process. Herein, molybdenum disulfide (MoS2) was used to enhance the catalytic performance of Fe3+/persulfate (PS) for phenol removal. In the Fe3+/MoS2/PS system, 99.6 ± 0.1% of phenol was removed in 60 min, comparable to that of the Fe2+/PS/MoS2 system (99.1 ± 0.3%). With the help of MoS2, 99.3 ± 4.2% of Fe3+ was transformed to Fe2+ in 10 min, and the Fe2+/Fe ratio was able to be maintained at 70.0 ± 1.4% after 60 min. The rapid and complete reduction of Fe3+ with MoS2 made it possible to replace Fe2+ by Fe3+, which is easier to store, transport, and use. The decrease in XPS peak area percentage of Mo(IV) and the lower valent S after reaction revealed that MoS2 acted as an electron provider in the Fe redox cycle. Quenching experiment results indicated that the phenol removal was highly depended on the surface-bound radicals, including both SO4•- and •OH. Those results have demonstrated that ferric salts can be directly used in the Fe-based AOPs and the redox cycle could be sustained with the assistance of MoS2.[Abstract] [Full Text] [Related] [New Search]