These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ecological and human health risk assessment of metals in soils and wheat along Sutlej river (India). Author: Setia R, Dhaliwal SS, Singh R, Singh B, Kukal SS, Pateriya B. Journal: Chemosphere; 2023 Jan; 312(Pt 1):137331. PubMed ID: 36414035. Abstract: Heavy metal (HMs) entry into soil affects the food chain, which is of great worry for human well-being hazards. In order to study the association of HMs in soil-plant system, surface (0-0.15 m) soil and wheat grain samples were collected within five km buffer zone of Sutlej river in Punjab (India). These samples were analysed for total arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), nickle (Ni), lead (Pb), and zinc (Zn). Among all the HMs in soil and grain samples, the concentration of total Fe was maximum and As was minimum. The HM contamination of soils was assessed using contamination factor (CF), enrichment factor (EF), potential ecological risk (Er) and modified potential ecological risk (mEr). The CF, EF, Er and mEr were highest for Cd in soils. The bioaccumulation metal factor was highest for Zn and lowest for Ni in wheat grain. There was a significant (p < 0.05) positive relationship between HM concentration in soils and wheat grains indicating the health risk due to consumption of wheat cultivated around the five km buffer of the Sutlej river. The carcinogenic and non-carcinogenic risk due to ingestion of wheat grain were higher from Cd and Pb, respectively. These results are helpful for devising the remediation approaches to decrease the multi-metal contamination in soils and plants, and the epidemiological ways to preclude the human health risk from HM contamination.[Abstract] [Full Text] [Related] [New Search]