These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multi-responsive and programmable actuators made with nacre-inspired graphene oxide-bacterial cellulose film. Author: Yang K, Cai W, Lan M, Ye Y, Tang Z, Guo Q, Weng M. Journal: Soft Matter; 2022 Dec 07; 18(47):9057-9068. PubMed ID: 36416498. Abstract: In recent years, graphene oxide (GO)-based multi-responsive actuators have attracted great interest due to their board application in soft robots, artificial muscles, and intelligent mechanics. However, most GO-based actuators suffer from low mechanical strength. Inspired by the natural nacre, a graphene oxide-bacterial cellulose (GO-BC) film with a "brick and mortar" structure is constructed. Compared with the pure GO film, the tensile strength of the GO-BC film is increased by about 2 times. Benefiting from the rich oxygen-containing functional groups of GO sheets and BC nanofibers, the cracked GO-BC films can be pasted together with the help of water, which can be used to construct GO-BC films with multi-dimensional complex structures. Subsequently, a GO-BC/polymer actuator capable of responding to various stimuli is successfully developed through a complementary strategy of "active layer and inert layer". Further, based on the water-assisted pasting properties of GO-BC films, a series of GO-BC/polymer actuators with 3D complex deformations can be fabricated by pasting together two or more GO-BC/polymer actuators. Finally, the potential applications of multi-response GO-BC/polymer actuators in flexible robots, artificial muscles, and smart devices are demonstrated through a series of applications such as bionic sunflowers, octopus-inspired soft tentacles, and smart curtains.[Abstract] [Full Text] [Related] [New Search]