These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the elongation factors from calf brain. 2. Functional properties of EF-1 alpha, the action of physiological ligands and kirromycin.
    Author: Crechet JB, Parmeggiani A.
    Journal: Eur J Biochem; 1986 Dec 15; 161(3):647-53. PubMed ID: 3641717.
    Abstract:
    The properties of EF-1 alpha from calf brain have been investigated and compared with those of EF-Tu. EF-1 alpha binds GDP and GTP in a 1:1 stoichiometry, showing the same affinity for both nucleotides (K'd = 2-4 microM). EF-1 beta strongly enhances the dissociation rate of the EF-1 alpha X GDP complex and to a lesser extent of the EF-1 alpha X GTP complex. Aminoacyl-tRNA (aa-tRNA) stabilized EF-1 alpha X GTP much less efficiently than the EF-Tu X GTP complex. Unlike EF-Tu, EF-1 alpha sustains the binding of aa-tRNA to the ribosome also in the presence of GDP or in the absence of any nucleotide, though to a lesser degree than with GTP. Kirromycin enhances the dissociation rate of both EF-1 alpha X GTP and EF-1 alpha X GDP but especially that of the latter. This effect results in an increase of the exchange rate of the EF-1 alpha-bound nucleotide with free nucleotides. Although in this regard the effect of kirromycin mimics that of EF-1 beta, the antibiotic is incapable of increasing the EF-1 alpha X GDP/GTP exchange rate when aa-tRNA and ribosomes are present. Therefore, unlike EF-1 beta, kirromycin cannot enhance the rate of poly(Phe) synthesis. On the other hand, the failure of kirromycin to induce a GTP-like conformation of EF-1 alpha X GDP, as in the case of EF-Tu X GDP, explains its inability to inhibit peptide bond formation in the eukaryotic system.
    [Abstract] [Full Text] [Related] [New Search]