These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting. Author: Yan PP, Chen XC, Liang ZX, Fang YP, Yao J, Lu CX, Cai Y, Jiang L. Journal: Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182. Abstract: Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m-2 by mixing seawater and river water, superior to the majority of the state-of-the-art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high-performance nanofluidic devices.[Abstract] [Full Text] [Related] [New Search]