These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vaspin Attenuates Atrial Abnormalities by Promoting ULK1/FUNDC1-Mediated Mitophagy. Author: Zhu Y, Gu Z, Shi J, Chen C, Xu H, Lu Q. Journal: Oxid Med Cell Longev; 2022; 2022():3187463. PubMed ID: 36425056. Abstract: The worldwide incidence and prevalence of atrial fibrillation (AF) are increasing, making it a life-threatening condition due to the higher numbers of people suffering from obesity. Vaspin, an adipokine derived from epicardial adipose tissue, has been reported to reduce inflammation, inhibit apoptosis, and induce autophagy; however, its role in the pathogenesis of AF is not known. In this study, we investigated the role of vaspin in patients with AF and explored the molecular mechanisms using atrial myocytes in vitro. Our data showed that vaspin levels were significantly reduced in the plasma of patients with AF. Lower plasma levels of vaspin were also associated with a higher risk of AF in patients with obesity. Vaspin treatment in vitro alleviated cardiomyocyte injury, atrial fibrosis, atrial myocyte apoptosis, and mitochondrial injury in atrial myocytes following Ang-II stress. Moreover, our results demonstrated that vaspin protected against Ang-II-induced atrial myocyte dysfunction by inducing mitophagy. We also observed that vaspin treatment enhanced the phosphorylation of Fun14 domain-containing protein 1 (FUNDC1) at Ser17 by unc-51 like autophagy activating kinase 1 (ULK1), resulting in the induction of mitophagy. These positive effects of vaspin were reversed by ULK1 silencing in Ang-II-stimulated HL-1 cells. Our study is the first to propose that vaspin plays a vital role in AF pathogenesis via ULK1/FUNDC1-regulated mitophagy and could be a novel therapeutic target for AF.[Abstract] [Full Text] [Related] [New Search]