These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry metabolomics studies on non-organic soybeans versus organic soybeans (Glycine max), and their fermentation by Rhizopus oligosporus.
    Author: Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK.
    Journal: J Sci Food Agric; 2023 Apr; 103(6):3146-3156. PubMed ID: 36426592.
    Abstract:
    BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus. RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P < 0.05) was observed between Z and ZF: most of the sugars and isoflavone glycosides were found only in Z, while more amino acids and organic acids were found in ZF. An additional four metabolites clustered as C-glycosylflavonoids were discovered from MS/MS-based molecular networking. CONCLUSION: Chemical profiles of non-organic and organic soybeans exhibited no significant difference. However, the metabolite profile of the unfermented soybeans, which were higher in sugars, shifted to higher amino acid and organic acid content after fermentation, thereby potentially enhancing their nutritional value. © 2022 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]