These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU-1/Acidified Carbon Nanotubes Composites.
    Author: Li Y, Tang J, Lin Y, Li J, Yang Y, Zhao P, Fei J, Xie Y.
    Journal: Molecules; 2022 Nov 11; 27(22):. PubMed ID: 36431862.
    Abstract:
    Rutin, a natural flavonol glycoside, is widely present in plants and foods, such as black tea and wheat tea. The antioxidant and anti-inflammatory effects of flavonoids are well known. In this study, a new electrochemical rutin sensor was developed using multiwalled carbon nanotubes/aluminum-based metal-organic frameworks (MWCNT/CAU-1) (CAU-1, a type of Al-MOF) as the electrode modification material. The suspension of multiwalled carbon tubes was dropped on the surface of the GCE electrode to make MWCNT/GCEs, and CAU-1 was then attached to the electrode surface by electrodeposition. MWCNTs and CAU-1 were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Due to the synergistic effect of CAU-1 and MWCNT-COOH, the prepared sensor showed an ultrasensitive electrochemical response to rutin. Under optimized conditions, the sensor showed a linear relationship between 1.0 × 10-9~3.0 × 10-6 M with a detection limit of 6.7 × 10-10 M (S/N = 3). The sensor also showed satisfactory stability and accuracy in the detection of real samples.
    [Abstract] [Full Text] [Related] [New Search]