These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence of non-tailpipe emission contributions to PM2.5 and PM10 near southern California highways. Author: Wang X, Gronstal S, Lopez B, Jung H, Chen LA, Wu G, Ho SSH, Chow JC, Watson JG, Yao Q, Yoon S. Journal: Environ Pollut; 2023 Jan 15; 317():120691. PubMed ID: 36435278. Abstract: Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM2.5 and PM10 filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM2.5 and PM10 concentrations were approximately 10-15 and 30 μg/m3, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM2.5 and PM10 mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.[Abstract] [Full Text] [Related] [New Search]