These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Author: Xue P, Chen Y, Xu Y, Valenzuela C, Zhang X, Bisoyi HK, Yang X, Wang L, Xu X, Li Q. Journal: Nanomicro Lett; 2022 Nov 28; 15(1):1. PubMed ID: 36441443. Abstract: In nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO2 nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices. The resulting soft actuators are found to exhibit brilliant, angle-independent structural color, as well as ultrafast actuation and recovery speeds (a maximum curvature of 0.52 mm-1 can be achieved within 1.16 s, and a recovery time of ~ 0.24 s) in response to acetone vapor. As proof-of-concept illustrations, structural colored soft actuators are applied to demonstrate a blue gripper-like bird's claw that can capture the target, artificial green tendrils that can twine around tree branches, and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor. The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.[Abstract] [Full Text] [Related] [New Search]