These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Variations of the urban PM2.5 chemical components and corresponding light extinction for three heating seasons in the Guanzhong Plain, China.
    Author: Shi J, Liu S, Qu Y, Zhang T, Dai W, Zhang P, Li R, Zhu C, Cao J.
    Journal: J Environ Manage; 2023 Feb 01; 327():116821. PubMed ID: 36442450.
    Abstract:
    In order to investigate the variations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) chemical components responding to the pollution control strategy and their effect on light extinction (bext) in the Guanzhong Plain (GZP), the comparisons of urban atmospheric chemical components during the heating seasons were extensively conducted for three years. The average concentration of PM2.5 decreased significantly from 117.9 ± 57.3 μg m-3 in the heating season 1 (HS1) to 53.5 ± 31.3 μg m-3 in the heating season 3 (HS3), which implied that the effective strategies were implemented in recent years. The greatest contribution to PM2.5 (∼30%) was from Organic matter (OM). The heightened contributions of the secondary inorganic ions (SNA, including NO3-, SO42-, and NH4+) to PM2.5 were observed with the values of 34% (HS1), 41% (HS2), and 42% (HS3), respectively. The increased percentages of NO3- contributions indicated that the emission of NOx should be received special attention in the GZP. The comparison of PM2.5 chemical compositions and implications across major regions of China and the globe were investigated. NH4NO3 was the most important contributor to bext in three heating seasons. The average bext was decreased from 694.3 ± 399.1 Mm-1 (HS1) to 359.3 ± 202.3 Mm-1 (HS3). PM2.5 had a threshold concentration of 75 μg m-3, 64 μg m-3, and 57 μg m-3 corresponding to the visual range (VR) < 10 km in HS1, HS2, and HS3, respectively. The enhanced impacts of the oxidant on PM2.5 and O3 were observed based on the long-term variations in PM2.5 and OX (Oxidant, the sum of O3 and NO2 mixing ratios) over the five heating seasons and PM2.5 and O3 over six summers from 2016 to 2021. The importance of coordinated control of PM2.5 and O3 was also investigated in the GZP.
    [Abstract] [Full Text] [Related] [New Search]