These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pyruvate dehydrogenase kinase 4 promotes osteoblastic potential of BMP9 by boosting Wnt/β-catenin signaling in mesenchymal stem cells.
    Author: Yang YY, Luo HH, Deng YX, Yao XT, Zhang J, Su YX, He BC.
    Journal: Int J Biochem Cell Biol; 2023 Jan; 154():106341. PubMed ID: 36442735.
    Abstract:
    Bone morphogenetic protein 9 (BMP9) is an effective osteogenic factor and a promising candidate for bone tissue engineering. The osteoblastic potential of BMP9 needs to be further increased to overcome its shortcomings. However, the details of how BMP9 triggers osteogenic differentiation in mesenchymal stem cells (MSCs) are unclear. In this study, we used real-time PCR, western blot, histochemical staining, mouse ectopic bone formation model, immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation to investigate the role of pyruvate dehydrogenase kinase 4 (PDK4) in BMP9-induced osteogenic differentiation of C3H10T1/2 cells, as well as the underlying mechanism. We found that PDK4 was upregulated by BMP9 in C3H10T1/2 cells. BMP9-induced osteogenic markers and bone mass were increased by PDK4 overexpression, but decreased by PDK4 silencing. β-catenin protein level was increased by BMP9, which was enhanced by PDK overexpression and decreased by PDK4 silencing. BMP9-induced osteogenic markers were reduced by PDK4 silencing, which was almost reversed by β-catenin overexpression. PDK4 increased the BMP9-induced osteogenic markers, which was almost eliminated by β-catenin silencing. Sclerostin was mildly decreased by BMP9 or PDK4, and significantly decreased by combined BMP9 and PDK4. In contrast, sclerostin increased significantly when BMP9 was combined with PDK4 silencing. BMP9-induced p-SMAD1/5/9 was increased by PDK4 overexpression, but was reduced by PDK4 silencing. PDK4 interacts with p-SMAD1/5/9 and regulates the sclerostin promoter. These findings suggest that PDK4 can increase the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via the downregulation of sclerostin. PDK4 may be an effective target to strengthen BMP9-induced osteogenesis.
    [Abstract] [Full Text] [Related] [New Search]