These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Age-associated changes in circulatory fatty acids: new insights on adults and long-lived individuals.
    Author: Ali S, Aiello A, Zotti T, Accardi G, Cardinale G, Vito P, Calabrò A, Ligotti ME, Intrieri M, Corbi G, Caruso C, Candore G, Scapagnini G, Davinelli S.
    Journal: Geroscience; 2023 Apr; 45(2):781-796. PubMed ID: 36449220.
    Abstract:
    Long-lived individuals (LLIs) are considered an ideal model to study healthy human aging. Blood fatty acid (FA) profile of a cohort of LLIs (90-111 years old, n = 49) from Sicily was compared to adults (18-64 years old, n = 69) and older adults (65-89 years old, n = 54) from the same area. Genetic variants in key enzymes related to FA biosynthesis and metabolism were also genotyped to investigate a potential genetic predisposition in determining the FA profile. Gas chromatography was employed to determine the FA profile, and genotyping was performed using high-resolution melt (HRM) analysis. Blood levels of total polyunsaturated FA (PUFA) and total trans-FA decreased with age, while the levels of saturated FA (SFA) remained unchanged. Interestingly, distinctively higher circulatory levels of monounsaturated FA (MUFA) in LLIs compared to adults and older adults were observed. In addition, among LLIs, rs174537 in the FA desaturase 1/2 (FADS1/2) gene was associated with linoleic acid (LA, 18:2n-6) and docosatetraenoic acid (DTA, 22:4n-6) levels, and the rs953413 in the elongase of very long FA 2 (ELOVL2) was associated with DTA levels. We further observed that rs174579 and rs174626 genotypes in FADS1/2 significantly affect delta-6 desaturase (D6D) activity. In conclusion, our results suggest that the LLIs have a different FA profile characterized by high MUFA content, which indicates reduced peroxidation while maintaining membrane fluidity.
    [Abstract] [Full Text] [Related] [New Search]