These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Loss of transketolase promotes the anti-diabetic role of brown adipose tissues.
    Author: Ji Y, Liu W, Zhu Y, Li Y, Lu Y, Liu Q, Tong L, Hu L, Xu N, Chen Z, Tian N, Wu L, Zhu L, Tang S, Zhang P, Tong X.
    Journal: J Endocrinol; 2023 Mar 01; 256(3):. PubMed ID: 36449405.
    Abstract:
    Transketolase (TKT), an enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), bi-directionally regulates the carbon flux between the PPP and glycolysis. Loss of TKT in adipose tissues decreased glycolysis and increased lipolysis and uncoupling protein-1 (UCP1) expression, protecting mice from high-fat diet-induced obesity. However, the role of TKT in brown adipose tissue (BAT)-dependent glucose homeostasis under normal chow diet remains to be elucidated. We found that TKT ablation increased levels of glucose transporter 4 (GLUT4), promoting glucose uptake and glycogen accumulation in BAT. Using the streptozotocin (STZ)-induced diabetic mouse model, we discovered that enhanced glucose uptake due to TKT deficiency in BAT contributed to decreasing blood glucose and weight loss, protecting mice from STZ-induced diabetes. Mechanistically, TKT deficiency decreased the level of thioredoxin-interacting protein, a known inhibitor for GLUT4, by decreasing NADPH and glutathione levels and inducing oxidative stress in BAT. Therefore, our data reveal a new role of TKT in regulating the anti-diabetic function of BAT as well as glucose homeostasis.
    [Abstract] [Full Text] [Related] [New Search]