These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature.
    Author: Wang F, Yu Z, Zhai S, Li Y, Xu Y, Ye Y, Wei X, Xu J, Xue B.
    Journal: Environ Sci Pollut Res Int; 2023 Mar; 30(11):31895-31904. PubMed ID: 36459322.
    Abstract:
    With the rapid development of transportation and vehicles, the elimination of NOx and CO has highly attracted public attention. In this work, vacancy-rich CeO2 nanopencil supported CuO catalysts (CuO/CeO2-NPC) were successfully prepared for NO reduction by CO. Importantly, CeO2 with nanopencil-like shape (CeO2-NPC) have been synthesis by solvothermal method for the first time. The physicochemical properties of all samples were studied in detail by combining the means of X-ray diffraction (XRD), Raman spectroscopy, electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 physisorption (Brunauer-Emmett-Teller), and NO and CO temperature-programmed desorption (NO-TPD and CO-TPD) techniques. Compared with CeO2 nanorods and nanoparticles supported CuO catalysts (CuO/CeO2-NR and CuO/CeO2-NP), the CuO/CeO2-NPC catalysts showed the highest catalytic activity, affording more than 90% NO conversion at 69 °C as well as excellent H2O tolerance at 150 °C, which is superior to catalysts previously reported. Characterization results indicated that the synergistic effect between the well-dispersed CuO and the CeO2 nanopencil support enables a favorable electron transfer between these components and enhances the density of surface oxygen vacancies and Cu+ species, which consequently accelerating the redox cycle. The results indicated that the morphology control of CeO2 support could be an efficient way to evidently enhance the catalytic performance for NO + CO reaction.
    [Abstract] [Full Text] [Related] [New Search]