These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acrylamide mitigation in foods using recombinant L-asparaginase: An extremozyme from Himalayan Pseudomonas sp. PCH182. Author: Patial V, Kumar V, Joshi R, Gupta M, Singh D. Journal: Food Res Int; 2022 Dec; 162(Pt A):111936. PubMed ID: 36461280. Abstract: Acrylamide has received worldwide attention due to its existence in commonly consumed foods. L-asparaginase reduces acrylamide formation in foods by hydrolyzing available L-asparagine. Herein, L-asparaginase (Ps-ASNase II) of Pseudomonas sp. PCH182 was expressed in Escherichia coli (E. coli), purified, and evaluated for acrylamide reduction in food samples. The monomeric 37 kDa Ps-ASNase II protein was purified to homogeneity with a 70 % yield. The enzyme was active at a wide pH range (5.0-11.0) and temperature (10-80 °C) with optimum activity at 45 °C in 50 mM Tris-HCl (pH 8.5) after 10 min. The Km and Vmax for L-asparagine were 0.52 ± 0.06 mM and 42.55 ± 4.0 U/mg, respectively. Also, the half-life and Kd value of the enzyme at 37 °C was 458 min and 1.51 × 10-3/min, suggesting its higher stability. Consistently, the enzyme retained 62 % residual activity after 60 days of storage at 4 °C. The Ps-ASNase II enzyme (5 U/mL) treatment of raw potato chips resulted in 90 % asparagine hydrolysis exhibiting high efficiency. Ps-ASNase II (5 U/mL) treated potato chips significantly reduced acrylamide content by 73 % at 37 °C within 24 min compared to untreated controls. Collectively, these findings verified Ps-ASNase's effectiveness and capability to lower acrylamide formation in fried potato chips without altering the food product's nutritional profile.[Abstract] [Full Text] [Related] [New Search]