These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics. Author: Zhang X, Zheng F, Zhao C, Li Z, Li C, Xia Y, Zheng S, Wang X, Sun X, Zhao X, Lin X, Lu X, Xu G. Journal: Anal Chem; 2022 Dec 06; 94(48):16604-16613. PubMed ID: 36472119. Abstract: Glycosides are a large family of secondary metabolites in plants, which play a critical role in plant growth and development. Due to the complexity and diversity in structures and the limited availability of authentic standards, comprehensive annotation of the glycosides remains a great challenge. In this study, using maize as an example, a deep annotation method of glycosides was proposed based on untargeted liquid chromatography-high-resolution tandem mass spectrometry metabolomics analysis. First, knowledge-based in silico aglycone and glycosyl/acyl-glycosyl libraries were built. A total of 1240 known and potential aglycones from databases and literature were recorded. Next, the MS parameters beneficial to aglycone ion-rich MS/MS were explored using 1782 high-resolution MS/MS spectra of glycosides from the MassBank of North America (MoNA) and confirmed by 52 authentic glycoside standards. Then, screening rules for aglycon ions in MS/MS were recommended. Glycoside candidates were further filtered by MS/MS-based chemical classification and MS/MS similarity of aglycon-glycoside pairs. Finally, the glycosylation sites of flavonoid mono-O-glycosides were recommended by characteristic fragmentation patterns. The developed method was validated using glycosides and nonglycosides from the MoNA library. The annotation accuracy rates were 96.8, 94.9, and 98.0% in negative ion mode (ESI-), positive ion mode (ESI+), and the combined ESI- & ESI+, respectively. The annotation specificity was 99.6% (ESI-), 99.6% (ESI+), and 99.2% (ESI- & ESI+). A total of 274 glycosides (including 34 acyl-glycosides) were tentatively annotated in maize by the developed method. The method enables effective and reliable annotation for plant glycosides.[Abstract] [Full Text] [Related] [New Search]