These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecularly imprinted probe based on CdTe QDs and magnetic nanoparticles for selective recognition of malachite green in seawater and its sensing mechanisms.
    Author: Liu Y, Tan L, Wang K, Wang J.
    Journal: Mikrochim Acta; 2022 Dec 06; 190(1):8. PubMed ID: 36472666.
    Abstract:
    A magnetic molecularly imprinted probe (MMIP@QD) was synthesized by reverse microemulsion method using CdTe QDs, Fe3O4, and molecularly imprinted polymer as the fluorophore, magnetic carrier, and recognition sites, respectively. The nanoparticle was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and vibrating sample magnetometry (VSM). In the optimal experimental condition, fluorescent emission intensity (measured at excitation wavelengths of 350 nm) was quenched linearly with increasing malachite green (MG) concentration from 0.8 to 28.0 μM with LOD of 0.67 μM. Simultaneously, it was observed that the maximum absorption wavelength was blue shifted gradually with the increase of MG concentration. The inner filter effect, static quenching, and band gap transition were interpreted as the mechanisms of fluorescence quenching and wavelength shift. Thermodynamic studies indicated that the quenching reaction proceeded spontaneously. The developed sensor was applied to detect MG in seawater samples. Satisfactory recoveries of MG in spiked seawater ranged from 83.6 to 122.1% with RSD < 1.8%.
    [Abstract] [Full Text] [Related] [New Search]