These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genome-wide identification and gene expression analysis of the 14-3-3 gene family in potato (Solanum tuberosum L.).
    Author: He F, Duan S, Jian Y, Xu J, Hu J, Zhang Z, Lin T, Cheng F, Li G.
    Journal: BMC Genomics; 2022 Dec 07; 23(1):811. PubMed ID: 36476108.
    Abstract:
    BACKGROUND: 14-3-3 proteins are essential in regulating various biological processes and abiotic stress responses in plants. Although 14-3-3 proteins have been studied in model plants such as Arabidopsis thaliana and Oryza sativa, there is a lack of research on the 14-3-3 gene family in potatoes (Solanum tuberosum L.). RESULTS: A total of 18 14-3-3 genes encoding proteins containing a typical conserved PF00244 domain were identified by genome-wide analysis in potatoes. The St14-3-3 gene family members were unevenly distributed across the chromosomes, and gene structure analysis showed that gene length and intron number varied greatly among the members. Phylogenetic analysis of 14-3-3 proteins in potatoes and other plant species showed that they could be divided into two distinct groups (ε and non-ε). Members in the ε group tended to have similar exon-intron structures and conserved motif patterns. Promoter sequence analysis showed that the St14-3-3 gene promoters contained multiple hormone-, stress-, and light-responsive cis-regulatory elements. Synteny analysis suggested that segmental duplication events contributed to the expansion of the St14-3-3 gene family in potatoes. The observed syntenic relationships between some 14-3-3 genes from potato, Arabidopsis, and tomato suggest that they evolved from a common ancestor. RNA-seq data showed that St14-3-3 genes were expressed in all tissues of potatoes but that their expression patterns were different. qRT-PCR assays revealed that the expression levels of nearly all tested St14-3-3 genes were affected by drought, salt, and low-temperature stresses and that different St14-3-3 genes had different responses to these stresses. CONCLUSIONS: In summary, genome-wide identification, evolutionary, and expression analyses of the 14-3-3 gene family in potato were conducted. These results provide important information for further studies on the function and regulation of St14-3-3 gene family members in potatoes.
    [Abstract] [Full Text] [Related] [New Search]