These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alkaliphiles for comprehensive utilization of red mud (bauxite residue)-an alkaline waste from the alumina refinery.
    Author: Naykodi A, Patankar SC, Thorat BN.
    Journal: Environ Sci Pollut Res Int; 2023 Jan; 30(4):9350-9368. PubMed ID: 36480139.
    Abstract:
    The mining industry has powered the human endeavor to make life more innovative, flexible, and comfortable. However, it has also led to concerns due to the increasing amount of mining and associated industrial waste. Special attention is highly desired for its proper management and safe disposal in the environment. The problem has only augmented with the increase in the mining costs because of the investments needed for ecological remediation after the mining operation. It is pertinent that the targeted technologies need to be developed to utilize mining and associated industrial waste as a secondary resource to ensure sustainable mining operations. Every perceived waste is a valuable resource that is needed to be utilized to create additional value. In this review, the case of alkaline bauxite residue (red mud)-alumina refinery waste has been discussed at length. The highlight of the proposed work is to understand the importance of alkaliphile-assisted biomining-a sustainable alternative to conventional metal recovery processes. Along with the recovery of metals, pH reduction of red mud is possible through biomining, which ultimately paves the way for its complete utilization. The unique adaptation strategies of alkaliphiles make them more suitable for biomining of red mud through bioleaching, biosorption, and bioaccumulation, which have been discussed here. Furthermore, we have focused on the potential of the indigenous microflora of red mud for metal recovery in addition to its neutralization. The study of indigenous alkaliphiles from red mud, including its isolation and propagation, is crucial for the industrial-scale application of alkaliphile-based technology and has been emphasized.
    [Abstract] [Full Text] [Related] [New Search]