These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inner workings of the alligator ankle reveal the mechanistic origins of archosaur locomotor diversity.
    Author: Turner ML, Gatesy SM.
    Journal: J Anat; 2023 Apr; 242(4):592-606. PubMed ID: 36484567.
    Abstract:
    Major transformations in the locomotor system of archosaurs (a major clade of reptiles including birds, crocodiles, dinosaurs, and pterosaurs) were accompanied by significant modifications to ankle anatomy. How the evolution of such a complex multi-joint structure is related to shifts in ankle function and locomotor diversity across this clade remains unclear and weakly grounded in extant experimental data. Here, we used X-ray Reconstruction of Moving Morphology to reconstruct skeletal motion and quantify the sources of three-dimensional ankle mobility in the American alligator, a species that retains the ancestral archosaur ankle structure. We then applied the observed relationships between joint excursion and locomotor behaviors to predict ankle function in extinct archosaurs. High-resolution reconstructions of Alligator skeletal movement revealed previously unseen regionalized coordination among joints responsible for overall ankle rotation. Differences in joint contributions between maneuvers and steady walking parallel transitions in mobility inferred from the ankle structure of fossil taxa in lineages with more erect hind limb postures. Key ankle structures related to ankle mobility were identified in the alligator, which permitted the characterization of ancestral archosaur ankle function. Modifications of these structures provide morphological evidence for functional convergence among sublineages of bird-line and crocodylian-line archosaurs. Using the dynamic insight into the internal sources of Alligator ankle mobility and trends among locomotor modes, we trace anatomical shifts and propose a mechanistic hypothesis for the evolution of ankle structure and function across Archosauria.
    [Abstract] [Full Text] [Related] [New Search]