These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.) - Assessing the influence of biological and environmental factors.
    Author: Gomez-Delgado AI, Tibon J, Silva MS, Lundebye AK, Agüera A, Rasinger JD, Strohmeier T, Sele V.
    Journal: J Trace Elem Med Biol; 2023 Mar; 76():127110. PubMed ID: 36495851.
    Abstract:
    BACKGROUND: Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety. METHODOLOGY: Blue mussels were collected monthly from one location in Western Norway from February 2018 to December 2018, and from April 2019 to April 2020. Samples were analyzed for PTEs using inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC) coupled to ICP-MS. Temperature, salinity and fluorescence (chlorophyll a) were monitored in the seawater column by STD/CTD, to assess the potential influence of these environmental factors on the PTE levels in the mussels. RESULTS: The results showed seasonal variations in the PTEs, with somewhat higher concentrations in spring and winter months. Unusually high levels of total As (101.2 mg kg-1 dw) and inorganic As (53.6 mg kg-1 dw) were observed for some of the time points. The organic As species arsenobetaine was generally the major As species (17-82% of total As) in the mussels, but also simple methylated As species and arsenosugars were detected. Principal components analysis (PCA) did not show a consistent relationship between the environmental factors and the PTE concentrations, showing contrary results for some elements for the periods studied. The condition index (CI) could explain variations in element concentration with significant correlations for Cd (r = -0.67, p = 0.009) and Pb (r = -0.62, p = 0.02 in 2019/20 and r = -0.52, p = 0.02 in 2018), whereas the correlation between As and CI was not significant (r = 0.12 in 2018, and r = -0.06 in 2019/20). Higher concentrations of iAs and arsenosugars coincided with increased signals of chlorophyll a, suggesting that phytoplankton blooms could be a source of As in the blue mussels. CONCLUSION: To our knowledge, this is the first study of As species in blue mussels collected over a time period of two years, providing an insight into the natural variations of these chemical forms in mussels. In terms of mussel as food and future feed material, concentrations of Cd, Hg and Pb were below the maximum levels (MLs) established in the EU food and feed legislation. However, levels of As and iAs in mussels at some time points exceeded the MLs for As in the feed legislation, and the margin of exposure (MOE) was low if these mussels were for human consumption, highlighting the importance of determining the chemical forms of As in feed and food.
    [Abstract] [Full Text] [Related] [New Search]