These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced elimination of Cr(VI) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: Performance and mechanism.
    Author: Tian H, Huang C, Wang P, Wei J, Li X, Zhang R, Ling D, Feng C, Liu H, Wang M, Liu Z.
    Journal: Bioresour Technol; 2023 Feb; 369():128452. PubMed ID: 36503100.
    Abstract:
    A novel polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero-valent iron (S-nZVI@PBC) was developed to enhance Cr(VI) removal from aqueous media. The characteristics of morphology, chemical composition, and functional groups of S-nZVI@PBC, as well as its kinetics and mechanism for Cr(VI) removal were explored. Characterization verified S-nZVI was successfully loaded onto PEI modified biochar. The adsorption process was well represented pseudo-second-order model (R2 = 0.990) and Langmuir isotherm model (R2 = 0.962), indicating it was a monolayer chemical adsorption process. The Cr(VI) removal was affected by pH and achieved the maximum when pH = 3.0, which may be ascribed to the better corrosion of nZVI and release of Fe(II) from the S-nZVI@PBC in acidic condition. The primary mechanisms were adsorption, reduction, and co-precipitation. S-nZVI@PBC exhibited higher stability and reusability than nZVI, which makes it more promising in environmental application. Overall, S-nZVI@PBC is of great potential for treating Cr(VI)-containing wastewater.
    [Abstract] [Full Text] [Related] [New Search]