These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-step thermal polymerization synthesis of nitrogen-rich g-C3N4 nanosheets enhances photocatalytic redox activity.
    Author: Peng L, Liu J, Li Z, Jing Y, Zou Y, Chu H, Xu F, Sun L, Huang P.
    Journal: RSC Adv; 2022 Nov 22; 12(52):33598-33604. PubMed ID: 36505684.
    Abstract:
    Graphitic carbon nitride (g-C3N4) has attracted enormous attention as a visible-light-responsive carbon-based semiconductor photocatalyst. However, fast charge recombination seriously limits its application. Therefore, it is urgent to modify the electronic structure of g-C3N4 to obtain excellent photocatalytic activity. Herein, we reported a one-step thermal polymerization synthesis of nitrogen-rich g-C3N4 nanosheets. Benefiting from the N self-doping and the ultrathin structure, the optimal CN-70 exhibits its excellent performance. A 6.7 times increased degradation rate of rhodamine B (K = 0.06274 min-1), furthermore, the hydrogen evolution efficiency also reached 2326.24 μmol h-1 g-1 (λ > 420 nm). Based on a series of characterizations and DFT calculations, we demonstrated that the N self-doping g-C3N4 can significantly introduce midgap states between the valence band and conduction band, which is more conducive to the efficient separation of photogenerated carriers. Our work provides a facile and efficient method for self-atom doping into g-C3N4, providing a new pathway for efficient photocatalysts.
    [Abstract] [Full Text] [Related] [New Search]